## Q1.

A stationary wave is formed due to superposition between a progressive wave and its reflection.

Both the progressive wave and its reflection are polarised.

Which statement about the progressive wave and its reflection is true at an antinode?

|   |                                           |   | /T - 4 - 1 4 1 - |
|---|-------------------------------------------|---|------------------|
| D | They must be polarised in the same plane. | 0 |                  |
| С | They must have different frequencies.     | 0 |                  |
| В | They must be coherent.                    | 0 |                  |
| Α | i ney must be longitudinal waves.         | 0 |                  |

(Total 1 mark)

## Q2.

Which row is correct for both a progressive wave and a stationary wave?

|   | Progressive wave                                       | Stationary wave                                         |  |
|---|--------------------------------------------------------|---------------------------------------------------------|--|
| A | Some of the particles do not vibrate.                  | All the particles vibrate in phase with each other.     |  |
| В | None of the particles vibrate with the same amplitude. | All the particles vibrate with the same amplitude.      |  |
| С | All the particles vibrate.                             | Some of the particles do not vibrate.                   |  |
| D | All the particles vibrate in phase with each other.    | None of the particles vibrate in phase with each other. |  |

## Q3.

A laser emits light of wavelength 600 nm for 10 ns.

What is the number of complete waves emitted by the laser?

- **A** 5 × 10<sup>17</sup>
- **B** 5 × 10<sup>12</sup>
- C 5 × 108
- **D** 5 × 10<sup>6</sup>

(Total 1 mark)

## Q4.

A detector measures the intensity of light from a source  $S_1$ . Polaroid material is placed between source  $S_1$  and the detector. When the material is rotated through a small angle, the detected intensity does not change. When this procedure is repeated for a source  $S_2$ , the detected intensity decreases.

Which is correct?

|   | Light waves from S₁ | Light waves from S <sub>2</sub> |   |
|---|---------------------|---------------------------------|---|
| Α | unpolarised         | polarised                       | C |
| В | unpolarised         | unpolarised                     | C |
| С | polarised           | polarised                       | 0 |
| D | polarised           | unpolarised                     | 0 |

## Q5.

A loudspeaker producing a single-frequency sound is mounted above a tube filled with water. A tap at the bottom of the tube is opened to allow the water to run out.



A student observes the change in loudness of the sound emitted by the tube as the water runs out.

When the length of the column of air in the tube reaches  $L_1$ , the loudness is at its first maximum.

The next maximum is reached when the length of the column of air is  $L_2$ .

What is the wavelength of the sound emitted by the loudspeaker?

 $A L_2$ 

**C**  $L_2 - L_1$ 

B 2L<sub>1</sub>

**D**  $2(L_2 - L_1)$ 

## Q6.

Powder is spread along the inside of an air-filled pipe that is closed at one end. A loudspeaker is placed at the other end.

At certain sound frequencies a stationary wave is produced so that powder collects in evenly spaced piles. These piles correspond to positions of minimum amplitude.



The distance between pile **A** and pile **B** is 0.20 m.

What is the wavelength of the stationary sound wave?

| Α | 0.04 m | 0 |
|---|--------|---|
| В | 0.05 m | 0 |
| С | 0.10 m | 0 |
| D | 0.20 m | 0 |

(Total 1 mark)

#### Q7.

Two aerials A<sub>1</sub> and A<sub>2</sub> receive radio waves from the same distant transmitter T.

The waves have a frequency of 88 MHz.

The phase difference between the waves received by  $\mathbf{A}_1$  and  $\mathbf{A}_2$  is 6.6 rad.

What is the distance  $A_1T - A_2T$ ?

| Α | 1.6 m | 0 |
|---|-------|---|
| В | 3.2 m | 0 |
| С | 3.6 m | 0 |
| D | 7.2 m | 0 |

Q8.

A stationary wave of wavelength  $\lambda$  is produced on a string. What are the phase difference and the distance between adjacent antinodes?

|   | Phase difference | Distance            |   |
|---|------------------|---------------------|---|
| A | $\frac{\pi}{2}$  | $\frac{\lambda}{4}$ | 0 |
| В | $\frac{\pi}{2}$  | $\frac{\lambda}{2}$ | 0 |
| С | π                | $\frac{\lambda}{4}$ | 0 |
| D | π                | $\frac{\lambda}{2}$ | 0 |

(Total 1 mark)

## Q9.

A string with a length of 1.2 m vibrates at its second harmonic. The diagram shows the displacement–time graph for a point on the string.



What are the wavelength and frequency of the wave on the string?

|   | Wavelength / m | Frequency / kHz |   |
|---|----------------|-----------------|---|
| Α | 0.6            | 0.17            | 0 |
| В | 0.6            | 0.34            | 0 |
| С | 1.2            | 0.17            | 0 |
| D | 1.2            | 0.34            | 0 |

## Q10.

A standing wave is created on a string.

**D** They have the same speed.

Which statement about the two waves that create the standing wave is **not** correct?

| Α | They have the same frequency.            | 0 |
|---|------------------------------------------|---|
| В | They have a constant phase relationship. | 0 |
| С | They travel in opposite directions.      | 0 |

(Total 1 mark)

0

## Q11.

A narrow beam of light is incident on a sheet of Polaroid material. The intensity of the transmitted beam is a maximum.



The Polaroid sheet is rotated about the beam by 90° and the intensity of the transmitted beam decreases to zero.

Which row explains this observation?

|   | Nature of incident beam | Action of Polaroid material as it is rotated           |   |
|---|-------------------------|--------------------------------------------------------|---|
| Α | unpolarised             | polarises the incident beam                            | 0 |
| В | unpolarised             | absorbs the incident beam                              | 0 |
| С | polarised               | absorbs the incident beam                              | 0 |
| D | polarised               | changes the plane of polarisation of the incident beam | 0 |

# Q12.

Two points  ${\bf P}$  and  ${\bf Q}$  on a progressive wave are separated by distance d.



The phase difference between  ${\bf P}$  and  ${\bf Q}$  is  $\theta$  rad.

What is the wavelength?

 $A \frac{\theta d}{2\pi}$ 

0

**B**  $\theta d$ 

 $c \frac{2\pi d}{\theta}$ 

0

 $D \frac{d}{\theta}$ 

0

## Q13.

A long spring is used to demonstrate wave motion. The spring lies horizontally on a table. One end of the spring is attached to a wall.



The free end of the spring is quickly moved to one side and then back to the centre, creating a pulse.

This movement takes 0.40 s.

The pulse travels  $4.0~\mathrm{m}$  along the spring in a time of  $2.0~\mathrm{s}$ .

What is the length of the pulse?

(Total 1 mark)

#### Q14.

A stretched wire vibrates between two fixed points.

The frequency of the first harmonic of the vibrating wire is  $300\ Hz$ . Without making any other change, the tension in the wire is doubled.

What is the frequency of the new first harmonic of the wire?

**A** 150 Hz

**B** 420 Hz

C 600 Hz

**D** 1200 Hz

|     | _ |          |
|-----|---|----------|
| ( ) | 7 | <b>h</b> |
| w   |   | J        |

| QΙ | ວ.                                                          |                                                               |                                                                         |                         |        |                |
|----|-------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------|--------|----------------|
|    |                                                             | ationary wave<br>ch statement is                              | forms on a uniform str<br>s correct?                                    | ing.                    |        |                |
|    | A                                                           | The amplitude nodes.                                          | e of oscillations is a ma                                               | aximum at the           | 0      |                |
|    | В                                                           | The distance wavelength.                                      | between two adjacent                                                    | nodes equals one        | 0      |                |
|    | С                                                           | The oscillatio antiphase.                                     | ns at two adjacent anti                                                 | inodes are in           | 0      |                |
|    | D                                                           | The time peri-<br>string.                                     | od of oscillating sectio                                                | ns varies along the     | 0      |                |
|    |                                                             |                                                               |                                                                         |                         |        | (Total 1 mark) |
| Q1 | 6.                                                          |                                                               |                                                                         |                         |        |                |
|    |                                                             | -                                                             | e of frequency 660 Hz                                                   | z travels through a m   | edium. |                |
|    |                                                             | wave speed is<br>ch statement o                               | escribes the motion of                                                  | f a particle in the way | ve?    |                |
|    | A                                                           | $\mbox{\bf A}$ It is travelling at a speed of $330~m~s^{-1}.$ |                                                                         |                         |        |                |
|    | B It moves in phase with a particle in the wave 25 cm away. |                                                               | the wave 25 cm                                                          | 0                       |        |                |
|    | С                                                           | It oscillates w                                               | ith a time period of 1.5                                                | 5 ms.                   | 0      |                |
|    | D                                                           | It changes dir                                                | ection 660 times ever                                                   | y second.               | 0      |                |
|    |                                                             |                                                               |                                                                         |                         |        | (Total 1 mark) |
| Q1 | 7.                                                          |                                                               |                                                                         |                         |        |                |
|    | The<br>The                                                  | tension in the                                                | he first harmonic of a string is $\it T$ . eased to $\it 4T$ without cl | -                       |        | ne string.     |
|    | Which harmonic has a frequency $2f$ after this change?      |                                                               |                                                                         |                         |        |                |
|    | A                                                           | first                                                         | 0                                                                       |                         |        |                |
|    | В                                                           | second                                                        | 0                                                                       |                         |        |                |
|    | С                                                           | third                                                         | 0                                                                       |                         |        |                |
|    | D                                                           | fourth                                                        | 0                                                                       |                         |        |                |